mobilenet2 [논문정리] GhostNet: More Features from Cheap Operations *본 내용은 논문의 상세한 분석이 아닌, 간단한 복기용 정리입니다. GhostNet의 기초가 되는 MobileNet에 대한 설명은 이전 게시물을 참조해주세요. https://stevenkim1217.tistory.com/entry/%EB%85%BC%EB%AC%B8%EC%A0%95%EB%A6%AC-MobileNets-Convolutional-Neural-Networks-for-Mobile-Vision-Applications [논문정리] MobileNets: Convolutional Neural Networks for Mobile Vision Applications *본 내용은 논문의 상세한 분석이 아닌, 간단한 복기용 정리입니다. Introduction MobileNet의 핵심 아이디어는 Depthwise.. 2023. 9. 1. [논문정리] MobileNets: Convolutional Neural Networks for Mobile Vision Applications *본 내용은 논문의 상세한 분석이 아닌, 간단한 복기용 정리입니다. Introduction MobileNet의 핵심 아이디어는 Depthwise Separable Convolution입니다. 이 개념은 Depthwise Convolution과 Pointwise Convolution을 조합하는 방법으로 이루어집니다. Background 1. Standard Convolution 일반적인 Convolution 먼저 설명하겠습니다. 일반적인 Convolution에서는 Input 채널 개수 만큼 Filter의 채널도 3개가 있어서, Convolution 연산을 하면 하나의 채널의 output을 가집니다. 2. Depthwise Convolution 그런데 Standard와는 다르게, Depthwise Convo.. 2023. 9. 1. 이전 1 다음